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Abstract: 

In this paper we present our recent progress about the conjecture of Erdös-Straus 

by using Diophantine equations and the irreducible twin Pythagorean triples of 

the first type. 
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Introduction: 

The life of Paul Erdős (March 26, 1913 in Budapest, Hungary; September 20, 

1996 in Warsaw, Poland) was entirely devoted to his research. Living in 

destitution. He had no wife, no job, not even a house he lived with an old 

suitcase and a bag of orange plastic supermarket. The only possession that 

mattered to him was his little book [3]. He was a prolific researcher in any 

discipline, with more than 1,500 research articles published. In particular, many 

of these articles was to study his favorite fields (graph theory, number theory, 

combinatorics) from different angles, and to continually improve the elegance of 

the demonstrations. 

  One of the favorite maxims of  Erdős was: "Sometimes you have to complicate 

a problem to simplify the solution." 

  Another famous quote often attributed incorrectly to Erdős, but in reality from 

the Alfred Renyi [1]: "A mathematician is a machine that turns coffee into 

theorems." 
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Twin triples of the second type 

They are more difficult to determine ... 

a and b are consecutive if and only if | a - b | = 1 or | (u - v)² - 2v² | = 1: it is 

recognized then the equation Pell-Fermat x² - 2y² = ± 1, by asking x = (u - v) 

and y = v. 

There is indeed the triplets of the second type are much less common than the 

first type, such as before a = 1 ,000,000, there are 8 of the second type, against 

499,999 the first type. 

 

Theorem 1: 

It is said that three numbers a, b and c integers form a Pythagorean triple if they 

satisfy the relation: a² + b² = c². [4,5] 

 

Theorem 2: 

(a, b, c) is a Pythagorean triple if and only if for any nonzero integer n, (na; nb; 

nc) is also a Pythagorean triple. [4,5] 

 

Theorem 3: 

If two of the three numbers of a Pythagorean triple have a common divisor d, 

then d also divides the third number. 

So any Pythagorean triple can be reduced to an irreducible Pythagorean triple, 

where a, b and c are coprime two by two. [4,5] 

 

Theorem 4: 

Let a, b, c be integers. (a, b, c) is a Pythagorean triple irreducible if and only if 

there are two numbers u and v (u> v), of different parities and coprime, such as a 

= u² - v²; b = 2uv c = u² + v². [4,5] 
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Solve this equation in x, the two roots are: 

 

The discriminant must be a perfect square for x can be an integer. But this 

discriminant. 

 

is the sum of the squares of two numbers (4ay – ap) and 2py because: 

 

Thus the triplet ( ,  ,  ) is a Pythagorean triple 

Let us write down from an irreducible triple: 

 

 

 
By eliminating k using the first two equations we get there: 

 

 

Then express the two possible values of x and take the one that is positive: 

 

Finally z = x + a is: 

 

The initial decomposition of 4/p is then  written using an irreducible 

Pythagorean triple and the parameter initially introduced: 

 −  −  + 4 y a 2 y p a p  −  +  + 16 a2 y2 8 a2 y p 4 p2 y2 a2 p2

2 ( )−  + 4 y p ,

−
−  +  +  + 4 y a 2 y p a p  −  +  + 16 a2 y2 8 a2 y p 4 p2 y2 a2 p2

2 ( )−  + 4 y p

 := Δ  −  +  + 16 a2 y2 8 a2 y p 4 p2 y2 a2 p2

2 p y Δ

 = 2 p y β k

 = Δ γ k

 = x
( ) −  + β α  + β2 α2 a

2 α

 = z
a ( ) +  + β α  + β2 α2

2 α

 =  − 4 a y a p  α k 

 −  4 a y a p 

 =  + ( ) − 4 a y a p  2 4 p 2 y2 Δ 

 = y
a β p

 − 4 a β 2 α p



 

The parameter k of the Pythagorean triple (  ,  ,  ) is expressed as: 

 

 

In other words, the fraction 4/p is also written as: 

 

We have thus proved the: 

Theorem 5:  For any decomposition of the fraction 4/p sum of three Egyptian 

fractions, corresponds  a Pythagorean triple. 

Conversely there is the problem whether for every integer p> 1  we can find a 

Pythagorean triple which gives rise to the decomposition of 4/p as a sum of three 

Egyptian fractions, if it  is the case the conjecture of Erdös-Straus will be 

demonstrated. 

Consider the simplest triplet (3, 4, 5) and establish  a list of families of  numbers 

that admit a decomposition from the irreducible triple. We have two options 

available to us, related to the choice  or  which we denote by a triplet 

of fractions. 

For (  ,  ,  ) we have :  

For (  ,  ,  ) we have  

For p = 2 k, take the first identity , a = k we have the classical 

decomposition  

For p = 3 k, consider the second identity  , we have the decomposition 

 

For k = 5, take the first identity , with k = 5 we have the decomposition 
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Similarly for p = 7 k and 13 k, the first identity , we have the 

decompositions : 

 and  with respectively  a = 21k and 

a = 26k. 

Similarly for p = 11 k and 23 k, the first identity , we have the 

decompositions: 

 and  with respectively  a = 8k and 

a = 16k. 

By cons for multiples of 17 and 19 we use the second triplet cousin (5, 12, 13) 

for simple decompositions: 

With the triplet (12, 5, 13) we have the following decompositions 

 and  with respectively  a = 136k 

and a = 24k. 

Using these two first cousins Pythagorean triples (3, 4, 5) and (5, 12, 13) then 

we can simply show the result. 

Theorem 6: For any number p different of  1 or 17 modulo 24, these two first 

cousins Pythagorean triples (3, 4, 5) and (5, 12, 13) provide a decomposition of 

Straus Erdös 4/p. 

For proof, using the fact that every prime greater than 3 equals 5, 7, 11, 13, 17, 

19 or 23 modulo 24, there are only four decompositions to establish using the 

first two triplets cousins. 

With  and a=2 +3k we have 

 

With  and a=3 +3k we have  
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With  and a= 8 + 8k we have 

 

With and a= 4 + 5k we have 

 

We thus find classical results in a simple manner by this method according to 

the doctrine of Paul Erdös. 

Note: If p admits a decomposition 4/p=1/x + 1/y + 1/(x+a) associated with a 

twin Pythagorician triple of first type ( 2n+1, 2n(n+1), 2n(n+1)+1 ) then any 

multiple kp of p admits a decomposition associated with the same twin 

Pythagorician triple, by writing x1=kx, y1=ky,a1=ka. Thus it suffices to prove 

the conjecture for primes equal to 1 or 17 mod 24. 

Note that the study of progressions 2+3k, 1+24k and 17+24k requires the use of 

all Pythagorean triples cousins type 1, those of the form ( 2n+1, 2n(n+1), 

2n(n+1)+1 ), ie the two identities  and 

. Indeed we have the decomposition 

for p =  17 +  24k  with n =  2 +  3k and a =  4(1 + k ) (2 +  3k ) (17 +  24k): 
 

Verification of this new conjecture (for each p>2 there exist a twin Pythagorian 

triple of the first type which gives an Erdös-Straus decomposition of 4/p) have 

been made in few minutes using a simple computer for all numbers less than 100 

millions. 

Hence the very probably truth of the conjecture of Erdös-Straus."  
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